If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+34.14t+0=0
We add all the numbers together, and all the variables
-16t^2+34.14t=0
a = -16; b = 34.14; c = 0;
Δ = b2-4ac
Δ = 34.142-4·(-16)·0
Δ = 1165.5396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34.14)-\sqrt{1165.5396}}{2*-16}=\frac{-34.14-\sqrt{1165.5396}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34.14)+\sqrt{1165.5396}}{2*-16}=\frac{-34.14+\sqrt{1165.5396}}{-32} $
| 20x-8^x=0 | | x/6=x-25 | | 8(x+2)=3+2(-2x+3 | | 8y-(4y-32)=16 | | 3=1.50x+4.5 | | x-6x=-25 | | 4b-56=4(b-14) | | 2x-1=100000000000000099x | | x2=9/5=8 | | 5m+3/2=24-(2m-9) | | 4.5=3x+1.5 | | x−3=20−2x | | 0.04(12)+0.01x=0.02(12+x | | 6(-2x-4)=-84 | | −8x+19=-2x^2 | | 42=3(-2+2x) | | 63-3v=6v | | (6x-3)+(2x+13)=90 | | 20x=8^x | | 4y+4/3=8 | | 3(-5+2x)=-81 | | (8x-7)+(x+160=180 | | 25=-5(7+3x) | | -15=-5(9+2x) | | -21=m/3+2 | | 3r-8=(3r-6) | | 4(-7x+7)=168 | | 6(2t+9)=12t+1 | | 6(4x-7)=54 | | 10x-5=5+8× | | 25=-5(10+3x) | | -2.23(s-7)=-6.69 |